
SI Materials and Methods 

GENIST algorithm 
The MATLAB source code for GENIST is publically available at https://github.com/madeluis/GENIST. 
      
Step 1. Clustering: 
Input: Spatial gene expression data for all genes 
Output: Input genes divided in c clusters 
 
Clustering is implemented using linkage clustering. The specification of the number of clusters c, 
automatically implemented, is given by the Silhouette index (1). The Silhouette index choses the best 
number of clusters among a range, 𝑛"	/10	 ± 	5 , heuristically determined to ensure that a small number 
of nodes is provided to the inference step (≤~10 genes).  
      
Step 2. GRN inference: 
Step 2.1. Inferring intra-cluster connections 
Input 1: Time-series gene expression data for all genes in cluster Cn 
Input 2: User specification to consider whether genes can be activated by regulators (factors that were 
activated in the time point prior activation of the gene), by co-regulators (factors that are activated in the 
same time point of the activation of the gene), or by both   
Output: Sub-network for cluster Cn 
 
For each cluster Cn, for n ∈ [1,c], do:      

Step 2.1.1 Selection of potential regulators and co- regulators 
We limited the potential regulators of each gene (2): 
A gene gr is a potential regulator of a target gene gs (denoted gr ⇀ gs) if and only if it exhibits a 
±0.1 × gr change of expression immediately prior a change of expression of gs of ±0.1 × gs: 
      
𝑔* 	⇀ 𝑔, 	↔ 	 (𝑔*(𝑡) > 1.1×𝑔*(𝑡 − 1)|𝑔*(𝑡) < 0.9×𝑔*(𝑡 −
1))	&	 𝑔, 𝑡	 + 	1 > 	1.1	×	𝑔, 𝑡 𝑔, 𝑡	 + 	1 < 	0.9	×	𝑔, 𝑡 .	(1) 
 
A gene gr is a potential co-regulator of a target gene gs (denoted gr ⇀ gs) if and only if it exhibits a 
±0.1 × gr change of expression during a change of expression of gs of ±0.1 × gs: 
      
𝑔* 	⇀ 𝑔, 	↔ 	 (𝑔*(𝑡) > 1.1×𝑔*(𝑡)|𝑔*(𝑡) < 0.9×𝑔*(𝑡))	&	 𝑔, 𝑡 > 	1.1	×	𝑔, 𝑡 𝑔, 𝑡 < 	0.9	×	𝑔, 𝑡 .	(2) 
      
Step 2.1.2. DBN modeling 
We implemented the GRN inference step as a DBN learning problem (2–4). DBNs are BNs where 
the dependences among the variables can be derived over adjacent time steps. We adopted the 
common first order Markov assumption and stationarity assumption for deriving the DBN: the 
value of each variable at one time point depends only on the values of its regulators at the 
previous time point; and the probability of each variable in relation to its regulators is independent 
of time. These assumptions allow us to factorize the joint probability distribution: 
      
𝑃	 𝑋<, . . . , 𝑋> = 𝑃	(𝑋@|𝑋<, . . . , 𝑋@A<)@ = 	 𝑃	(𝑋@|𝑷𝒂(𝑋@))@                  (3)    
  
where 𝑋@  is the expression of gene 𝑖, 𝑚	 = 	𝑛 𝑇	– 	1  is the number of genes (nodes), and 𝑷𝒂(𝑋@) 
is the set of regulators of gene 𝑖, more generally known as parents of node 𝑖. 
      
Given some observations of the variables over time, estimating a DBN consists of finding the 
structure of (3) that maximizes a score, i.e., finding the most likely parents of each node. The 
score that we maximize in GENIST is the Bayesian Dirichlet equivalence uniform (BDeu)(5), 
which is one of the most commonly used scores to evaluate the structure of a DBN given no prior 



knowledge. The BDeu score of a DBN can be decomposed as the sum of the scores of the log 
conditional probabilities of each node. Consequently, we worked with the log of the BDeu, BDeul: 
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where 𝐺 refers to the Bayesian graph, 𝐷 refers to the dataset containing the observations of the 
system, 𝑁@\_ indicates the number of data vectors in which gene 𝑖,𝑋@, has the value 𝑘 while its 
parents are in the 𝑗𝑡ℎ configuration, and 𝛼 refers to the hyperparameters of the Dirichlet 
distribution, which are user-specified. 
      
From (3) and (4) it follows that we can decompose the problem of deriving the DBN into finding 
the parents for each node. For this, we started by discretizing the expression levels of each gene. 
The default number of discretization levels is 2, which was heuristically determined to yield the 
highest prediction precision (the number of discretization levels however, can be user-specified). 
Then, for each gene, a list of all possible subsets of potential regulators is generated. The 
maximum size allowed for any subset (maximum number of regulators of a gene) is 3, although it 
can be user-specified. Therefore, if gene i has r potential regulators and the maximum number of 
regulators is rmax, then the number of combinations of potential regulators, l, equals the number of 
subsets in r of size	𝑘	 ≤ 	 𝑟>gh: 
      
𝑙	 = 	 (_*)

*ijk
_]l     (5) 

          
The 𝐵𝐷𝑒𝑢L	is then used l times to evaluate the likelihood that each gene is due to each of the 
subset of potential regulators. The regulators of gene i are the ones contained in the subset that 
led to the highest value of the𝐵𝐷𝑒𝑢L. 

      
          
Step 2.2. Inferring inter-cluster connections 
Definition1. Cluster (sub-network) hub: Cluster node with the largest degree of edges leaving the node 
(out-degree). 
 
Input: Time-series gene expression data for all hubs in all clusters Cn, for n ∈ [1,c]. 
Output: Sub-network for all the hubs 
 
Repeat Steps 2.1.1-2.1.2 with time-series gene expression data for all hubs in all clusters, which leads to 
inter-cluster interactions inferred among the cluster hubs. 
 
Step 2.3 Merging sub-networks    
Input: c+1 non-connected sub-networks  
Output: GRN formed by c+1 interconnected sub-networks. 
 
Merge the c+1 sub-networks inferred, corresponding to clusters Cn, for n ∈ [1,c] and the sub-network 
inferred for the cluster hubs.   
      
Step 2.4.  Determining the sign of the interactions 
We implemented a score to estimate whether the inferred interactions are activations or repressions. The 
score, which is calculated for each edge individually, determines the conditional probability that a gene is 
active (inactive) given that a parent was active (inactive) in the prior time point, relative to the probability 
that a gene is active (inactive) given that a parent was inactive (active) in the prior time point. If the first 
conditional probability is larger (smaller) than the second one, then the parent is accounted as an 



activator (repressor). If both probabilities are equal, then the sign of the interaction is accounted as 
undetermined. 
      
Step 2.5. Filtering out weak interactions 
GENIST incorporates a filter to remove the weakest edges. The threshold for removal can vary between 0 
and the largest weight of the resulting network and it can be user-specified. The default value of the 
threshold is 0, i.e., no edges are removed.  
 
Network representation 
GENIST returns a MATLAB plot of the inferred GRN. In addition, it returns an output file containing a 
table with the inferred interactions in a Cytoscape format (6). This table can be imported into Cystoscape 
for visual representation purposes. The networks presented in this manuscript were plotted via 
Cytoscape.  
 
Inference of the stem cell GRNs with GENIST  
The networks of XYL, QC, and SCN enriched genes presented in this manuscript were inferred by 
applying GENIST to a spatiotemporal dataset. Specifically, a spatial dataset (QC, CEI (7), XYL, SCN (8)) 
in combination with transcriptional profiles corresponding to the elongation (Stage II) and differentiation 
(Stage III) zones of the root (9) were used by the first step of the algorithm (clustering). Then, either the 
dataset of the transcriptional profile of 12 developmental zones of the Arabidopsis root, which contain 
temporal information (10), or our stem cell time course dataset, or the shuffled 12 developmental time 
points were used by the second step of the algorithm (DBN inference).  
      
SI Results 
 
GENIST validation 
We tested GENIST’s inference step with in silico time-series datasets and compared its performance with 
several other GRN inference algorithms that are designed to work with temporal data. For this, we used 
the DREAM 4 challenge 2 (11–13). To recover only the most probable interactions, we sought networks 
with high True Positives/ False Positives (TP/FP) ratios. We chose two performance metrics to indirectly 
measure this ratio, precision and Area under the Precision Recall Curve (AUPRC). Using these metrics 
we could score GENIST and compare it to other currently used algorithms (ebdbnet (14), ScanBMA (15), 
ARACNE (16), CLR (17), MRNET (18), LASSO (19,20)). GENIST performed better than these known 
algorithms in terms of the precision for both the 10- and 100-node networks (Table S2 (15) & S3 (15)). In 
the 10-node network, GENIST performed slightly below average in terms of the AUPRC, but it achieved 
the best performance in terms of AUPRC for 100-node networks. Overall, GENIST consistently achieved 
the lowest number of false negatives (FN) while maintaining the highest TP/FP ratio across network sizes. 
The high AUPRC and high precision of GENIST thus, suggested that we could infer networks with a large 
number of TPs to be validated with biological experiments.   

To understand if the application of GENIST to root data would allow us to recover root GRNs, we 
first applied GENIST to two different root datasets to infer known networks. Specifically, we used the 
transcriptional profile of 12 developmental time points of the root (10) and a stem cell time course that we 
generated, both of which embed temporal information about transcriptional regulations of genes 
expressed in the root. We used root 1 of the 12 developmental time points and replicate 1 of the stem cell 
time course, as these replicates led to the highest precisions for inferring the known networks. We 
inferred a phloem (Fig. S3), a CEI (Fig. S4A-F), and a XYL network (Fig. S4G-L), with 5, 4, and 3 nodes, 
respectively. We illustrated the inferred importance of genes by depicting different node sizes as a 
function of their outdegree. The use of small networks allowed us to test the Bayesian inference step of 
GENIST without the need of a clustering step. First, we predicted the phloem network consisting of 
ALTERED PHLOEM DEVELOPMENT (APL) and four downstream genes (Fig. S3A)(21). We found that 
the precision of the phloem network obtained with the 12 developmental time points (Precision = 0.8) (Fig. 
S3C) was higher than that obtained with the stem cell time course (Precision = 0.45) (Fig. S3D). Similarly, 
the precision of the XYL network was higher when obtained with the 12 developmental time points 



(Precision = 1) (Fig. S4B) than with the stem cell time course (Precision = 0.25) (Fig. S4C). The precision 
of the CEI network, whose genes are expressed in the stem cells, was similar with both datasets 
(Precision = 0.8 and 0.71, with the 12 developmental time points and the stem cell time course datasets, 
respectively) (Fig. S4H,I). To understand if our predicted regulations could be due to random inferences, 
we shuffled the rows and columns (corresponding to the genes and time zones) of the 12 developmental 
time points dataset and inferred the same three networks. We obtained precisions of 0.33, 0.5, and 0 for 
the phloem, CEI and XYL networks, respectively. This indicated that although some inferences could be 
correctly guessed, the 12 developmental time points and the stem cell time course network precisions are 
higher than those inferred with random data. In addition, our results indicated that the 12 developmental 
time points dataset led to higher precision networks and it can be used to infer regulations of genes 
during both stem cell processes and later root development. Next, we compared the performance of 
GENIST with two other well-known and most often used algorithms, ARACNE and CLR (22) (Fig. S3F,G). 
We first predicted the phloem network (Fig. S3A) (21) (Fig. S3C). Since, overall, using the 12 
developmental time points performed better than using the stem cell time course for inferring the small 
networks, we used the 12 developmental time points of these five genes (10) as the input data into the 
three algorithms (Fig. S3B). Our inferred network (Precision = 0.8, Fig. S3C) outperformed the other 
algorithms (Precision = 0.2, Precision = 0, Fig. S3F,G). Similarly, GENIST outperformed the other 
algorithms in the 4 and 3 node networks (Fig. S4). Thus, these results validate the performance of our 
algorithm in identifying small GRNs and confirm that the 12 developmental time points dataset can be 
used in combination with GENIST to infer root GRNs. 

Given the expected complexity of the stem cell enriched gene networks and the anticipation that 
they would contain genes involved in multiple cells, we tested whether GENIST could infer relationships 
among genes expressed in specific stem cells or across more than one stem cell. For this, we combined 
the previously tested phloem, CEI, and XYL networks to test GENIST. As genes expressed in a specific 
cell type most likely interact with genes expressed in the same cell, we hypothesized that a preprocessing 
step prior the Bayesian inference, where genes were grouped based on their co-expression, could be 
biologically relevant. We, therefore, incorporated into the algorithm a clustering step. We used the full 
GENIST algorithm, with both clustering and inference steps, to infer relationships among the combination 
of the phloem, CEI, and XYL networks (Fig. S4M). For this, we used our cell type specific dataset to 
group all the genes from these networks according to their co-expression across the stem cells and Stage 
II and Stage III. GENIST grouped these cell-type-specific genes in 3 clusters and used the 12 
developmental time points to build one Bayesian Network for each resulting cluster of genes. This step 
resulted in three independent Bayesian Networks (cluster partial precision = {0.75, 0.8, 0.5}). GENIST 
then predicted relationships among the most representative nodes (hubs) of each cluster to infer inter-
cluster edges (SI Methods). Therefore, inter-cluster edges are representative of potential regulations 
among co-expressed genes. As a result, the hubs in our networks have a regulatory effect on both their 
own cell-type-specific sub-network and the entire network. We identified the hubs of each sub-network as 
SHR (XYL), SCR (CEI), and APL (PHL). Inferring the relationships between SHR, SCR, and APL 
connected the clusters and resulted in the final network (Fig. S3H) (Precision = 0.5556), which improved 
the results from applying GENIST’s inference step alone (Precision = 0.071). With an overall ~8-fold 
precision improvement, our approach suggests that incorporating a clustering step using a cell-specific 
dataset can exceed the performance of temporal data based-inference algorithms. Moreover, the 
clustering step refined the computational complexity of the network inference. In particular, the time 
complexity as the function of the average number of genes in a cluster increased at a rate of ∼ 
O(n2log3(n)), corresponding to a 2627-fold change between no clustering and 15 clusters for a 100-node 
network (Table S4). Thus, clustering computationally facilitates the application of GENIST to large 
networks. Overall, our result indicated that the capacity of GENIST to integrate distinct datasets can be 
beneficial for inferring GRNs in organisms where transcriptional datasets of diverse characteristics are 
available, and in particular, for inferring GRNs of genes enriched in the stem cells. 

 
 

Mathematical modeling 
To predict the sign of the undetermined regulations in the PAN subnetwork inferred with the 12 
developmental time points of the root (Fig. 3A), and in turn, provide a system that permitted to simulate 
the predictions made by our network, we developed a mathematical model that represents all the 



dependences inferred between PAN and its downstream targets (Fig. 3A). The model development 
consisted of a first step to determine the unknown regulation signs (finding the optimal configuration of 
the model) and a second step to find the parameters of the optimal configuration of the model. 

Our model is comprised of eight Ordinary Differential Equations (ODEs), each of which 
represents the change of one TF expression over time. In our ODEs, we assumed independent 
probabilities of regulatory bindings to describe the equations where TFs are influenced by multiple 
factors. Every dependency of a TF on another TF is represented by a Hill function term (representing an 
activation or a repression), as Hill functions provide a simple platform that captures important aspects of 
transcriptional regulatory interactions. However, some of the dependences in these equations have an 
undetermined sign, and the Hill term for these dependences can take two different forms. Specifically, 
since the PAN subnetwork comprises 11 unknown sign regulations, our model can take 2048 
configurations.  

To understand which configuration would better fit the experimental data, we estimated our model 
parameters for multiple configurations by fitting the ODEs to the gene expression patterns along the 12 
developmental time points of the root. We particularly used a global optimization method, Simulated 
Annealing, to fit the ODEs to the 12 developmental time points of the root. Since performing an 
exhaustive search throughout 2048 configurations would be unfeasible, we took a sub-optimal approach 
by fitting one equation at a time. In particular, during the search of the possible configurations of ODE 𝑖 
involving 𝑛 unknown regulations, we fitted the parameters of the equation for the 2^ possible 
configurations, while we eliminated the dependences among the rest of the ODEs. To eliminate the 
dependences while fitting the parameters of ODE 𝑖, we used a first order approximation of the 
experimental data on all the factors associated to all other ODEs. We found that this provided more 
robust optimization results than optimizing all equations at once. For ODE 𝑖, we selected the configuration 
that minimized the mean squared error between the experimental and simulated expression value of 
factor 𝑖. 

To ensure that all parameters were jointly estimated, we performed a final parameter estimation 
of the model by fitting all the ODEs to the 12 developmental time points of the root. The resulting model 
and associated parameters are described in (6) – (13) and Table S6. This model allowed us to perform 
simulations of wild type and pan mutant backgrounds (Fig. 3 B-C). These simulations permitted the 
comparison of our results to experimental validations to measure the confidence of the network 
predictions. 
 
𝑷𝑨𝑵:									 𝒅𝑷

𝒅𝒕
= 	𝒑𝑷 − 	𝒅𝑷𝑷         (6) 

 
𝑩𝑹𝑨𝑽𝑶:	 𝒅𝑩

𝒅𝒕
= 	𝒑𝑩

𝑷𝒃𝟏

𝑲𝑩𝟏
𝒃𝟏Z	𝑷𝒃𝟏

	 𝑵𝒃𝟐

𝑲𝑩𝟐
𝒃𝟐Z	𝑵𝒃𝟐

	 𝑾𝑷𝒃𝟑

𝑲𝑩𝟑
𝒃𝟑Z	𝑾𝑷𝒃𝟑

	 𝑬𝒃𝟒

𝑲𝑩𝟒
𝒃𝟒Z	𝑬𝒃𝟒

	 𝑯𝑪𝒃𝟓

𝑲𝑩𝟓
𝒃𝟓Z	𝑯𝑪𝒃𝟓

	− 	𝒅𝑩𝑩   (7) 

 
𝑵𝑻𝑻:								 𝒅𝑵

𝒅𝒕
= 	𝒑𝑵 		

𝑷𝒏𝟏

𝑲𝑵𝟏
𝒏𝟏Z	𝑷𝒏𝟏

	 𝑩𝒏𝟐

𝑲𝑵𝟐
𝒏𝟏Z	𝑩𝒏𝟐

	 𝑬𝒏𝟑

𝑲𝑵𝟑
𝒏𝟑Z	𝑬𝒏𝟑

− 	𝒅𝑵𝑵      (8) 

 
𝑾𝑹𝑲𝒀𝟐𝟑:	 𝒅𝑾

𝒅𝒕
= 	𝒑𝑾 	

𝑩𝒘𝟏

𝑲𝑾𝟏
𝒘𝟏 Z	𝑩𝒘𝟏

	 𝑷𝒘𝟐

𝑲𝑾𝟐
𝒘𝟐 Z	𝑷𝒘𝟐

	 𝟏

𝟏Z( 𝑵
𝑲𝑾𝟑

)𝒘𝟑
− 	𝒅𝑾𝑾        (9) 

 
𝑯𝑺𝑭𝑨𝟏𝑬:	 𝒅𝑯𝑨

𝒅𝒕
= 	𝒑𝑯𝑨

𝑩𝒉𝒂𝟏

𝑲𝑯𝑨𝟏
𝒘𝟏 Z	𝑩𝒉𝒂𝟏

	 𝑷𝒉𝒂𝟐

𝑲𝑯𝑨𝟐
𝒉𝒂𝟐 Z	𝑷𝒉𝒂𝟐

	 𝟏

	𝟏Z( 𝑵
𝑲𝑯𝑨𝟑

)𝒉𝒂𝟑
− 	𝒅𝑯𝑨𝑯𝑨     (10) 

 
𝑾𝑰𝑷𝟒:	 𝒅𝑾𝑷

𝒅𝒕
= 	𝒑𝑾𝑷

𝟏

𝟏Z( 𝑵
𝑲𝑾𝑷𝟏

)𝒘𝒑𝟏
	 𝑬𝒘𝒑𝟐

𝑲𝑾𝑷𝟐
𝒘𝒑𝟐 Z	𝑬𝒘𝒑𝟐

− 	𝒅𝑾𝑷𝑾𝑷      (11) 

 



𝑯𝑺𝑭𝑪𝟏:	 𝒅𝑯𝑪
𝒅𝒕

= 	𝒑𝑯𝑪
𝑩𝒉𝒄𝟏

𝑲𝑯𝑪𝟏
𝒉𝒄𝟏 Z	𝑩𝒉𝒄𝟏

	 𝑵𝒉𝒄𝟐

𝑲𝑯𝑪𝟐
𝒉𝒄𝟐 Z	𝑵𝒉𝒄𝟐

	− 	𝒅𝑯𝑪𝑯𝑪       (12) 

 
𝑬𝑰𝑵𝟑:	 𝒅𝑬

𝒅𝒕
= 	𝒑𝑬

𝑯𝑪𝒆𝟏

𝑲𝑬𝟏
𝒆𝟏Z	𝑯𝑪𝒆𝟏

	 𝟏

𝟏Z( 𝑵
𝑲𝑬𝟐

)𝒆𝟐
	 𝟏

𝟏Z( 𝑩
𝑲𝑬𝟑

)𝒆𝟑
	− 	𝒅𝑬𝑬        (13) 

To understand if the stem cell time course and the 12 developmental time points networks would 
lead to similar conclusions, we next modelled the PAN subnetwork inferred with the stem cell time course 
(Fig. S6B). We developed the model as explained for the one derived from the 12 developmental time 
points. The resulting 9-ODE model and associated parameters are described in (14) – (22) and Table S7. 
This model allowed us to perform simulations of wild type and pan mutant backgrounds (Fig. S6 C-D). 
 
𝑷𝑨𝑵:									 𝒅𝑷

𝒅𝒕
= 	𝒑𝑷 − 	𝒅𝑷𝑷         (14) 

 
𝑩𝑹𝑨𝑽𝑶:	 𝒅𝑩

𝒅𝒕
= 	𝒑𝑩

𝑷𝒃𝟏

𝑲𝑩𝟏
𝒃𝟏Z	𝑷𝒃𝟏

	 𝟏

𝟏Z( 𝑬𝑩𝑲𝑩𝟐
)𝒃𝟐
	 𝟏

𝟏Z( 𝑬
𝑲𝑩𝟑

)𝒃𝟑
− 	𝒅𝑩𝑩      (15) 

 
𝑵𝑻𝑻:								 𝒅𝑵

𝒅𝒕
= 	𝒑𝑵 		

𝑷𝒏𝟏

𝑲𝑵𝟏
𝒏𝟏Z	𝑷𝒏𝟏

	 𝑯𝑪𝒏𝟐

𝑲𝑵𝟐
𝒏𝟏Z	𝑯𝑪𝒏𝟐

	 𝟏

𝟏Z( 𝑾
𝑲𝑵𝟑

)𝒏𝟑
− 	𝒅𝑵𝑵      (16) 

 
𝑾𝑹𝑲𝒀𝟐𝟑:	 𝒅𝑾

𝒅𝒕
= 	𝒑𝑾 	

𝑺𝒘𝟏

𝑲𝑾𝟏
𝒘𝟏 Z	𝑺𝒘𝟏

	 𝟏

𝟏Z( 𝑬
𝑲𝑾𝟐

)𝒘𝟐
− 	𝒅𝑾𝑾         (17) 

 
𝑯𝑺𝑭𝑨𝟏𝑬:	 𝒅𝑯𝑨

𝒅𝒕
= 	𝒑𝑯𝑨

𝑩𝒉𝒂𝟏

𝑲𝑯𝑨𝟏
𝒘𝟏 Z	𝑩𝒉𝒂𝟏

	 𝟏

	𝟏Z( 𝑬𝑩
𝑲𝑯𝑨𝟐

)𝒉𝒂𝟐
− 	𝒅𝑯𝑨𝑯𝑨      (18) 

 
𝑺𝑪𝑹𝑴𝟐:	 𝒅𝑺

𝒅𝒕
= 	𝒑𝑺

𝟏

𝟏Z( 𝑬
𝑲𝑺𝟏

)𝒔𝟏
	 𝑾𝒔𝟐

𝑲𝑺𝟐
𝒔𝟐Z	𝑾𝒔𝟐

− 	𝒅𝑺𝑺        (19) 

 
𝑯𝑺𝑭𝑪𝟏:	 𝒅𝑯𝑪

𝒅𝒕
= 	𝒑𝑯𝑪

𝑩𝒉𝒄𝟏

𝑲𝑯𝑪𝟏
𝒉𝒄𝟏 Z	𝑩𝒉𝒄𝟏

	 𝑵𝒉𝒄𝟐

𝑲𝑯𝑪𝟐
𝒉𝒄𝟐 Z	𝑵𝒉𝒄𝟐

	− 	𝒅𝑯𝑪𝑯𝑪       (20) 

 
𝑬𝑰𝑵𝟑:	 𝒅𝑬

𝒅𝒕
= 	𝒑𝑬

𝟏

𝟏Z( 𝑷
𝑲𝑬𝟏

)𝒆𝟏
	 𝟏

𝟏Z( 𝑵
𝑲𝑬𝟐

)𝒆𝟐
	 𝟏

𝟏Z( 𝑯𝑪𝑲𝑬𝟑
)𝒆𝟑
	− 	𝒅𝑬𝑬        (21) 

𝑬𝑩𝑷:	 𝒅𝑬𝑩
𝒅𝒕

= 	𝒑𝑬𝑩
𝟏

𝟏Z( 𝑷
𝑲𝑬𝑩𝟏

)𝒆𝒃𝟏
	 𝟏

𝟏Z( 𝑩
𝑲𝑬𝑩𝟐

)𝒆𝒃𝟐
	 𝑬𝒆𝒃𝟑

𝑲𝑬𝑩𝟑
𝒆𝒃𝟑 Z	𝑬𝒆𝒃𝟑

	− 	𝒅𝑬𝑩𝑬𝑩      (22) 

 
Topological characteristics of the network of genes enriched in the stem cells 
An important feature of complex biological networks are developmental motifs such as positive and 
negative feedback loops (FLs) (23,24), which are more frequent in transcriptional regulatory networks 
than in random networks (25,26). FLs are known to be involved in multiple regulatory processes in 
multicellular organisms, where they tend to establish oscillations and bistability. Therefore, we analyzed 
whether our networks would recapitulate a significant number of FLs that could validate that our network 
did not have the characteristics of random networks. To test this, we simulated 1000 random networks of 
the size of our network. This randomization resulted in an average of 8.5 FLs/network, while our network 
contains a total of 151 FLs. This indicates that the number of FLs inferred in our network is significantly 



higher than expected by random, supporting that bistability or oscillations are behaviors that could 
emerge more frequently than in random systems and differentiating our network characteristics from 
those of random networks.  

Another common feature of biological networks is that they are scale-free, meaning that the 
distribution of the number of edges leaving each node (outdegree distribution) fits a decaying power law 
(27). This is in contrast to random networks, where the outdegree distribution is Gaussian (27). We found 
that our network showed the characteristics of a scale-free network (Fig. S9B), which indicates that there 
is a small number of genes with extremely high outdegree. Genes that have high outdegree in cellular 
networks tend to have an important biological function (28). Thus, the absence of these genes with high 
outdegree (hubs) could lead to functional or morphological disruptions of the stem cells. This 
characteristic suggests that our network topology can be used to guide the experimental search for stem 
cell regulators. Accordingly, we found that some of the predicted hubs have important roles in regulating 
the root SCN and meristem development, such as SHR (7,29–34), BBM(35), and AIL6 (PLT3)(35), as 
well as PAN (Fig. S6) (this study).  

 
 

 
 
 
 
 
 

 
 

Fig. S1. A ANOVA normalized expression values of known stem cell factors in SCN, QC, CEI, XYL Stage I to III. B-F 
Marker line (PET111:GFP) (10) used for the stem cell time course at days 3, 4, 5, 6, and 7, where the GFP negative 
cells were sorted. Scale bars are 20 µm. 
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Fig. S2. GENIST block diagram. GENIST is implemented in MATLAB, and is composed of two consecutive steps, 
clustering and GRN inference. Clustering is performed based on a spatial dataset. Each resulting cluster is 
independently processed by the GRN inference step, based on a temporal dataset. 
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Fig. S3. A-D Validation of GENIST’s inference step through the prediction of a small known Arabidopsis network 
composed of APL and its downstream targets NAC45, NAC86, MYR1, and C2, and comparison of its performance 
with some homologous algorithms. A Known genetic interactions among APL, NAC45, NAC86, MYR1, and C2. B 
Input data into the inference algorithms, consisting of the expression levels across 12 developmental time points (10) 
of the five TFs. C-E Networks inferred by GENIST’s inference step. The size of the nodes correlates with the amount 
of direct targets, illustrating the regulatory capacity of the node. The thickness of the edges illustrates the confidence 
of the regulation. C Network inferred with the 12 developmental time points. D Network inferred with the stem cell 
time course. E Network inferred with the shuffled 12 developmental time points. F CLR’s inferred network. G GRN 
inferred by ARACNE. C-G The number of TP, FP, and FN inferred edges shown, as well as precision of the inferred 
network, are in relation to the known genetic interactions.  
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Fig. S4. Validation of GENIST using two small known Arabidopsis networks. A-F Prediction of a small known 
Arabidopsis network composed of SHR, SCR, JKD, and MGP, and comparison of its performance with some 
homologous algorithms A Known genetic interactions among SHR, SCR, JKD, and MGP. B Network inferred by 
GENIST’s inference step with the 12 developmental time points dataset . C Network inferred by GENIST’s inference 
step with the stem cell time course. D Network inferred by GENIST’s inference step with the shuffled 12 zones of the 
longitudinal axis of the Arabidopsis root. E Skeleton inferred by ARACNE. F CLR’s inferred network. G-L Prediction of 
a small known Arabidopsis network composed of E2Fc, PHV, and REV, and comparison of its performance with 
some homologous algorithms. G Known genetic interactions among E2Fc, PHV, and REV. H Network inferred by 
GENIST’s inference step with the 12 developmental time points dataset . I Network inferred by GENIST’s inference 
step with the stem cell time course. J Network inferred by GENIST’s inference step with the shuffled 12 
developmental time points dataset .  K Skeleton inferred by ARACNE. L CLR’s inferred network. M Evaluation of 
GENIST performance on a 12-node network. The network contains three independent sub-networks, corresponding 
to the networks shown in Fig. S2 and S3. The clustering step, performed based on our cell-specific dataset, allows 
the algorithm to initially divide the network into smaller sub-networks, reducing the number of potential regulators and 
leading to a precision of 0.55. Although the clustering step fails to group SHR with MGP, SCR, and JKD, the link 
between cluster hubs connects it to the correct cluster. A-M The number of TP, FP, and FN inferred edges shown, as 
well as precision of the inferred networks, are in relation to the known genetic interactions. B-D,H-J The size of the 
nodes correlates with the amount of direct targets, illustrating the regulatory capacity of the node. The thickness of 
the edges illustrates the confidence of the regulation. 
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Fig. S5. Network of XYL-enriched TFs. A Network inferred with the 12 developmental time points dataset. Node sizes 
indicate importance of the nodes in terms of the number of TFs that they regulate. Nodes are color-coded. Green 
tones represent SHR targets inferred in common between the 12 developmental time points and the stem cell time 
course datasets. Orange tones represent SHR targets uniquely inferred with the 12 developmental time points 
dataset. Blue tones represent SHR targets uniquely inferred with the stem cell time course dataset. B-D Subset of the 
XYL network showing SHR and its predicted targets B Network inferred with the 12 developmental time points 
dataset . C Network inferred with the stem cell time course. Four of the targets (NAC076, IAA29, IAA1, PHB) are in 
common between B and C. D Network inferred with the shuffled 12 developmental time points dataset . No targets 
are predicted for SHR. 
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Fig. S6. Network of QC-enriched TFs. A QC network inferred with the stem cell time course. B Optimal configuration 
(combination of sings –activation or repression– of the regulations that were inferred with undefined signs, which best 
fits the data in the simulations of the equations) of the subnetwork of PAN and its downstream targets. C-D Resulting 
expression values of PAN and its downstream targets, over time (days 3 to 7), after simulating the optimal 
configuration of the model. The expression of each gene through time (in FPKM) was normalized (0 mean 1 variance 
and shifted into the positive quadrant) for plotting purposes, as FPKM values of different genes can have different 
scales. C Model simulated with the fitted equation parameters. D Model simulated with the PAN associated 
parameters set to zero to simulate a pan mutant situation. E Normalized expression values of PAN and its predicted 
downstream targets in Col-0 wild-type and in a pan mutant. Star (*) represents statistically significant changes of 
expression between the mutant and the wild type (q < 0.05). 
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Fig. S7. pan mutant alleles. A Root length (mean ± standard deviation) of 7-day-old primary seedling roots of Col-0 (n 
= 16) and pan mutant alleles (n = 16). Double star (**) represents statistical difference (p < 10-4, Student t-test). B-D 
pan mutant confocal images showing a disorganized QC of two additional alleles. E Relative fold-change of 
expression of PAN in the pan mutant alleles. Star (*) represents statistical difference (p < 0.05, Student t-test). F 
Confocal image showing the transcriptional pPAN:GFP fusion.  
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Fig. S8. A qRT-qPCR results of WOX5 in a pan mutant background; star (*) represents significant change of 
expression of WOX5 (Student t-test, p < 0.05). B qRT-qPCR results of PAN in a wox5 mutant and 35S:WOX5 lines 
showing no significant changes of expression. C Normalized expression values of known stem cell regulators in Col-0 
wild-type and in a pan mutant; star (*) represents statistically significant changes of expression between the mutant 
and the wild type (q < 0.05). 
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Fig. S9. Topological information of the stem cell maintenance network comprising the 201 TF found to be enriched in 
the SCN. The solid lines correspond to the power laws that the distributions fit. A Average clustering coefficient 
distribution, which follows a power law of the form 𝑦 = 1.027𝑥Al.��. B Out-degree distribution, which follows a power 
law of the form 𝑦 = 86.906𝑥A<.���. 
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Table S1. Gene Ontology category enrichment analysis in each of the stem cell types. 

GO TERM  CEI  XYL  QC  SCN  
GDP-mannose 4,6-dehydratase activity  -3.02 0 0 0 
De novo’ GDP-L-fucose biosynthesis  -3.32 0 0 0 
Biological process unknown  0 -3.18 0 0 
Microtubule motor activity  0 -9.29 0 0 
cyclin-dependent protein kinase activity  0 -3.39 0 0 
Nucleus  0 -3.61 0 -9.55 
Nucleolus  0 -3.65 0 0 
Spindle  0 -3.97 0 0 
Microtubule associated complex  0 -7.30 0 0 
Microtubule-based movement  0 -7.58 0 0 
Phragmoplast  0 -3.07 0 0 

Determination of bilateral symmetry  0 -3.01 0 0 
Guard cell differentiation  0 -3.78 0 0 
Histone phosphorylation  0 -3.78 0 0 
Transcription factor activity  0 0 -5.69 -16.22 
Pattern specification  0 0 -7.43 0 
Regulation of transcription  0 0 -3.21 0 
Cyclin binding  0 0 -3.15 0 
Root development  0 0 -5.09 -3.43 
Response to heat  0 0 0 -12.64 
Chloroplast  0 0 0 -4.94 
Response to wounding  0 0 0 -3.48 
DNA binding  0 0 0 -8.30 
Beta-fructofuranosidase activity  0 0 0 -3.42 
Trehalose biosynthesis  0 0 0 -3.11 
Regulation of transcription, DNA-dependent  0 0 0 -9.81 
Response to ethylene stimulus  0 0 0 -3.25 
Abscisic acid mediated signaling  0 0 0 -3.09 
Jasmonic acid mediated signaling pathway  0 0 0 -3.64 
Ethylene mediated signaling pathway  0 0 0 -3.77 
Transcriptional activator activity  0 0 0 -3.14 
Transcriptional repressor activity  0 0 0 -3.86 
Positive regulation of transcription  0 0 0 -3.46 
Defense response to fungus  0 0 0 -3.86 
Values are expressed in a log10 scale. The analysis was performed with the Chip enrich software. 
 



 
 
 
 
Table S2. Performance of the algorithm, applied to DREAM 4 challenge 2, 10 node networks. 

Method Precision AUPRC TP FP 

GENIST 0.520 0.413 26 24 

ebdbnet 0.509 0.438 28 27 

ScanBMA 0.432 0.505 35 46 

ARACNE 0.304 0.388 35 80 

CLR 0.215 0.397 50 183 

MRNET 0.215 0.409 53 193 

LASSO 0.190 0.487 62 265 

The true positives (TP) and false positives (FP) are given for the 5 networks. There are a total of 71 true 
edges across the 5 networks. 

 
 
 
 
 
 
 
Table S3. Performance of the algorithm, applied to DREAM 4 challenge 2, 100 node networks. 
Method Precision AUPRC TP FP 

GENIST 0.252 0.139 126 374 

ScanBMA 0.153 0.101 193 1062 

ARACNE 0.114 0.106 208 1621 

ebdbnet 0.054 0.043 182 3201 

CLR 0.035 0.123 678 18669 

LASSO 0.035 0.073 571 15757 

MRNET 0.035 0.13 689 18784 

The true positive (TP) and false positive (FP) columns are totaled across all 5 networks. There are 1024 
true edges across the 5 networks. 

 
 
 
 



 
 
 
 
Table S4. GENIST running times 
DREAM4 100-gene network 5. 10 runs average 

Number of clusters Running time (s) 

No clustering 75804.9981 

5 clusters 173.3386 

10 clusters 33.2263 

15 clusters 28.8517 

GENIST running times for processing the DREAM 4 challenge 2, 100-node network 5, for different number 
of clusters. Times shown (in seconds) are for an average of 10 runs. 

 
 
 
 
Table S5. List of primers 

 
 
 
 

Table S6. 12 developmental times model parameters 
Symbol Description Unit Value Range 

pP PAN production rate a.u. h−1 1.9165 0.5606 - 3.7094 

pB BRAVO production rate a.u. h−1 3.3466 1.4586 - 4.4444 

pN NTT production rate a.u. h−1 0.921 0.7834 - 3.9527 

Gene Purpose Stock ID Left Primer Right Primer 

PAN_057190 Genotype Salk_057190 ACATCAACACGGCCAAGTAAC TCTCTCCTCACTCCCTCCTTC 

PAN 031380 Genotype Salk_031830 CGGTAACACACATGACACATATG ATGGTGAAAACCATTGACTGG 

PAN 247 Genotype Sail_247 C12 TTGCCTCAATAAATCAGCCTG GAATTCTTGGCAGACACTTCG 

PP2A qRT-PCR X TAACGTGGCCAAAATGATGC GTTCTCCACAACCGCTTGGT 

PAN qRT-PCR X GGCTTGCACAGCTAGAGGAAGAGC TCCGGCTGCCAAATGCGTGT 

WOX5 qRT-PCR X GATTGTCAAGAGGAAGAGAAGGTGA 
 

AGCTTAATCGAAGATCTAATGGCG 
 



pW WRKY23 production rate a.u. h−1 4.1898 0.7636 - 4.1898 

pHA HCFA1E production rate a.u. h−1 3.1358 1.607 - 4.62 

pHC HSFC1 production rate a.u. h−1 0.6743 0.6743 - 4.5579 

pWP WIP4 production rate a.u. h−1 1.7706 0.5837 - 4.3632 

pE EIN3 production rate a.u. h−1 3.5084 1.38 - 4.4642 

dP PAN decay rate h−1 0.2573 0.1891 - 0.4697 

dB BRAVO decay rate h−1 0.1912 0.1826 - 0.3083 

dN NTT decay rate h−1 0.131 0.131 - 0.4169 

dW WRKY23 decay rate h−1 0.1478 0.0147 - 0.2569 

dHA HCFA1E decay rate h−1 0.191 0.1431 - 0.3742 

dHC HSFC1 decay rate h−1 0.2 0.1083 - 0.3054 

dWP WIP4 decay rate h−1 0.1716 0.1119 - 0.3287 

dE EBP decay rate h−1 0.1577 0.1388 - 0.2764 

KB1 HC concentration of half-max HC-dependent B 
activation 

a.u. 0.4874 0.4228 - 0.9508 

KB2 P concentration of half-max P-dependent B 
inhibition 

a.u. 0.3774 0.1226 - 1.2123 

KB3 N concentration of half-max N-dependent B 
inhibition 

a.u. 0.9475 0.2755 - 1.2 

KB4 P concentration of half-max P-dependent B 
inhibition 

a.u. 0.765 0.141 - 0.8236 

KB5 N concentration of half-max N-dependent B 
inhibition 

a.u. 0.9305 0.2397 - 1.0971 

KN1 P concentration of half-max P-dependent N 
inhibition 

a.u. 0.8679 0.25 - 1.1278 

KN2 B concentration of half-max B-dependent N 
inhibition 

a.u. 0.9656 0.1722 - 1.1285 

KN3 E concentration of half-max E-dependent N a.u. 0.6934 0.2073 - 0.9723 



inhibition 

KW1 N concentration of half-max N-dependent W 
activation 

a.u. 0.7876 0.3948 - 1.0207 

KW2 P concentration of half-max P-dependent W 
inhibition 

a.u. 0.6272 0.2074 - 0.7628 

KW3 E concentration of half-max E-dependent W 
activation 

a.u. 0.0957 0.0266 - 0.8586 

KHA1 N concentration of half-max N-dependent HA 
activation 

a.u. 0.9123 0.3827 - 1.0168 

KHA2 P concentration of half-max P-dependent HA 
inhibition 

a.u. 0.8323 0.372 - 1.1785 

KHA3 E concentration of half-max E-dependent HA 
activation 

a.u. 0.2352 0.0508 - 0.7787 

KHC1 B concentration of half-max B-dependent HC 
activation 

a.u. 0.2428 0.2428 - 1.1452 

KHC2 N concentration of half-max N-dependent HC 
activation 

a.u. 1.0281 0.1809 - 1.235 

KWP1 N concentration of half-max N-dependent HC 
activation 

a.u. 0.4593 0.0518 - 0.781 

KWP2 E concentration of half-max E-dependent HC 
activation 

a.u. 0.6369 0.2344 - 0.8767 

KE1 HA concentration of half-max HA-dependent E 
activation 

a.u. 0.8437 0.2917 - 1.1875 

KE2 N concentration of half-max N-dependent E 
activation 

a.u. 0.615 0.0022 - 0.615 

KE3 B concentration of half-max B-dependent E 
activation 

a.u. 0.1496 0.0025 - 0.6638 

b1 Hill coefficient HC-dependent M activation - 0.8518 0.6624 - 0.9338 

b2 Hill coefficient P-dependent B inhibition - 0.8224 0.7496 - 0.9762 

b3 Hill coefficient N-dependent B inhibition - 0.7723 0.7723 - 1.2021 

b4 Hill coefficient P-dependent B inhibition - 1.0886 0.8193 - 1.1606 

b5 Hill coefficient N-dependent B inhibition - 0.7842 0.7214 - 0.8926 

n1 Hill coefficient P-dependent N inhibition - 0.9602 0.7687 - 0.9602 



n2 Hill coefficient B-dependent N inhibition - 0.842 0.7417 - 0.9579 

n3 Hill coefficient E-dependent N inhibition - 1.1795 0.7981 - 1.2161 

w1 Hill coefficient N-dependent W activation - 0.9507 0.7787 - 1.008 

w2 Hill coefficient P-dependent W inhibition - 0.8503 0.7295 - 0.9602 

w3 Hill coefficient E-dependent W activation - 1.0569 0.9993 - 1.2234 

ha1 Hill coefficient N-dependent HA activation - 0.9471 0.6835 - 0.9847 

ha2 Hill coefficient P-dependent HA inhibition - 0.8611 0.6277 - 0.9603 

ha3 Hill coefficient E-dependent HA activation - 1.2213 1.1063 - 1.2342 

hc1 Hill coefficient B-dependent HC activation - 0.9979 0.7447 - 0.9979 

hc2 Hill coefficient N-dependent HC activation - 0.9771 0.647 - 0.9771 

wp1 Hill coefficient N-dependent HC activation - 1.1477 1.0495 - 1.2692 

wp2 Hill coefficient E-dependent HC activation - 1.0131 0.716 - 1.154 

e1 Hill coefficient HA-dependent E activation - 1.1561 0.74 - 1.1561 

e2 Hill coefficient N-dependent E activation - 1.0253 1.0253 - 1.2221 

e3 Hill coefficient B-dependent E activation - 0.9893 0.9893 - 1.2484 

 
Table S7. Stem cell time course model parameters 
Symbol Description Unit Value Range  

pP PAN production rate a.u. h−1 1.7339 0.2934 -2.8631 

pB BRAVO production rate a.u. h−1 0.8572 0.5608 -3.1351 

pN NTT production rate a.u. h−1 0.5906 0.3001 -2.7948 

pHC HSFC1 production rate a.u. h−1 0.8499 0.4320 -2.7893 

pEB EBP production rate a.u. h−1 2.6078 0.3783 -3.0435 

pE EIN3 production rate a.u. h−1 3.0528 0.4209 -3.2377 

pHA HCFA1E production rate a.u. h−1 2.5538 0.3671 -3.0208 

pW WRKY23 production rate a.u. h−1 1.8797 0.4525 -3.1301 



pS SCRM2 production rate a.u. h−1 0.2267 0.0000 -0.3157 

dP PAN decay rate h−1 0.2192 0.0270 -0.3727 

dB BRAVO decay rate h−1 0.0080 0.0002 -0.2513 

dN NTT decay rate h−1 0.2178 0.0290 -0.4990 

dHC HSFC1 decay rate h−1 0.1219 0.0649 -0.3863 

dEB EBP decay rate h−1 0.0029 0.0009 -0.0914 

dE EBP decay rate h−1 0.0135 0.0017 -0.1643 

dHA HCFA1E decay rate h−1 0.2553 0.0110 -0.3278 

dW WRKY23 decay rate h−1 0.4585 0.0028 -0.9770 

dS SCRM2 decay rate h−1 0.0985 0.0024 -1.0641 

KB1 
P concentration of half-max P-dependent B 

activation 
a.u. 

0.0679 0.0002 -1.0415 

KB2 
EB concentration of half-max EB-dependent B 

inhibition 
a.u. 

0.1931 0.0533 -1.1721 

KB3 
E concentration of half-max E-dependent B 

inhibition 
a.u. 

0.2894 0.0063 -1.0687 

KN1 
P concentration of half-max P-dependent N 

inhibition 
a.u. 

0.8329 0.0695 -1.2140 

KN2 
HC concentration of half-max HC-dependent N 

inhibition 
a.u. 

0.9804 0.1413 -1.2295 

KN3 
W concentration of half-max W-dependent N 

inhibition 
a.u. 

0.0076 0.0001 -1.1787 

KHC1 
P concentration of half-max P-dependent HC 

activation 
a.u. 

0.5678 0.0999 -1.2526 

KHC2 
N concentration of half-max N-dependent HC 

activation 
a.u. 

0.9169 0.1199 -1.1949 

KEB1 
P concentration of half-max P-dependent E 

activation 
a.u. 

0.0045 0.0001 -1.0377 

KEB2 
B concentration of half-max B-dependent E 

activation 
a.u. 

0.1201 0.0024 -1.1947 



KEB3 
E concentration of half-max E-dependent E 

activation 
a.u. 

0.4171 0.0097 -1.0483 

KE1 
P concentration of half-max P-dependent E 

activation 
a.u. 

1.0881 0.0561 -1.2283 

KE2 
N concentration of half-max N-dependent E 

activation 
a.u. 

0.4486 0.0324 -1.1502 

KE3 
HC concentration of half-max HC-dependent E 

activation 
a.u. 

0.4713 0.0154 -1.2520 

KHA1 
B concentration of half-max B-dependent HA 

activation 
a.u. 

0.1728 0.0419 -1.1406 

KHA2 
E concentration of half-max E-dependent HA 

inhibition 
a.u. 

0.6195 0.0130 -0.8820 

KW1 
S concentration of half-max S-dependent W 

activation 
a.u. 

0.1116 0.0000 -0.9446 

KW2 
E concentration of half-max E-dependent W 

inhibition 
a.u. 

1.0999 0.0130 -1.1677 

KS1 
B concentration of half-max B-dependent HC 

activation 
a.u. 

0.5276 0.0000 -1.0121 

KS2 
E concentration of half-max E-dependent HC 

activation 
a.u. 

1.1531 0.8090 -1.2907 

b1 Hill coefficient P-dependent B inhibition - 1.0223 0.7430 -1.2337 

b2 Hill coefficient EB-dependent B inhibition - 0.8905 0.7047 -1.0973 

b3 Hill coefficient E-dependent B inhibition - 0.8127 0.6779 -1.2322 

n1 Hill coefficient P-dependent N inhibition - 0.8534 0.6917 -1.0528 

n2 Hill coefficient HC-dependent N inhibition - 0.9988 0.6808 -1.2025 

n3 Hill coefficient W-dependent N inhibition - 1.1919 0.8869 -1.3477 

hc1 Hill coefficient P-dependent HC activation - 0.9113 0.6322 -1.1085 

hc2 Hill coefficient N-dependent HC activation - 1.1327 0.6924 -1.1327 

eb1 Hill coefficient P-dependent E activation - 1.1654 0.7483 -1.2756 

eb2 Hill coefficient B-dependent E activation - 0.8445 0.7791 -1.2137 

eb3 Hill coefficient E-dependent E activation - 0.9612 0.7994 -1.2319 

e1 Hill coefficient P-dependent E activation - 0.7822 0.7035 -1.2289 



e2 Hill coefficient N-dependent E activation - 1.1477 0.7366 -1.3059 

e3 Hill coefficient HC-dependent E activation - 0.9695 0.6979 -1.2886 

ha1 Hill coefficient B-dependent HA activation - 1.1057 0.6664 -1.1504 

ha2 Hill coefficient E-dependent HA inhibition - 1.2065 0.7000 -1.3099 

w1 Hill coefficient S-dependent W activation - 1.0063 0.7237 -1.2156 

w2 Hill coefficient E-dependent W inhibition - 0.9374 0.7050 -1.2391 

s1 Hill coefficient W-dependent HC activation - 1.0285 0.7487 -1.2681 

s2 Hill coefficient E-dependent HC activation - 0.9486 0.7511 -1.2272 

 
 
Dataset S01. ANOVA normalized gene expression values in the SCN, QC, CEI, XYL, Stages 1,2,3. 
 
Dataset S02. Differentially expressed genes in each stem cell type 
 
Dataset S03. Known stem cell regulators found among the differentially expressed genes 

Dataset S04. Differentially expressed genes in the pan mutant with respect to the wild-type 

Dataset S05. Inferred clusters of TFs in the network of genes enriched in the stem cells 
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